
c
MATE: The Multi-Agent Test

Environment - Functional Description

CINDY L. MASON
ARTIFICIAL INTELLIGENCE RESEARCH BRANCH

NASA AMES RESEARCH CENTER
MOFFETT FIELD, CA 94035-1000

MAIL STOP 269-2

I

Arnes Research Center
Artificial Intelligence Research Branch

Technical Report FIA-93-09

June, 1993

MATE: The Multi-Agent Test
Environment - Functional Description

Cindy L. Mason

AI Research Branch, Mail Stop: 269-2
NASA Ames Research Center

Moffett Field, CA 94035 U.S.A.

mason@chaos .arc.nasa.gov

Abstract
In this report we present the Multi-Agent Test Environment, MATE.
MATE is a collection of experiment management tools for assisting in
the design, testing, and evaluation of distributed problem-solvers. It
provides the experimenter with an automated tool for executing and
monitoring experiments choosing among rule bases, number of agents,
communication strategies, and inference engines. Using MATE the ex-
perimenter can run a series of distributed problem-solving experiments
without human intervention. This report is similar in content to the
previous NASA Technical Report FIA-92-25 but contains an appendix
detailing a number of MATE functions.

MATE: The Multi-Agent Test Environment -
Functional Description

Cindy L. Mason

1 Introduction

The MATE (Multi-Agent Test Environment) testbed is a collection of experiment

management tools for the design, testing, and evaluation of distributed problem-

solving experiments. Using MATE the experimenter can run a series of distributed

problem-solving experiments without human intervention. MATE tools use several

UNIX-based workstations networked together via ethernet in a large local-area net-

work. Each workstation runs a single agent that communicates via the local-area

network, except for one workstation that serves as the MATE control center and corn-

munication server (see figure 1). Using MATE, the experimenter creates a problem-

solving setting by choosing the rule bases, number of agents, inference engine, and

communication strategy. Thus, MATE provides a platform for an experimenter to

investigate alternative reasoning, communication and control strategies.

The role of MATE in solving a particular problem-solving instance is depicted

in figure 2. The multi-agent software can be viewed in terms of 3 layers, the agent,

1

0 0 0

Figure 1: The MATE testbed architecture consists of the control and monitoring
program, AUTO-MATE, the communications server, and one or more agents, inter-
connected by an ethernet.

the communications layer, and MATE. An “agent” is composed of a lisp interpreter,

inference engine, rule base, data set, and a communications interface.

The communication layer provides four services to the agents: 1) point-to-point.

multi-cast, and broadcast message delivery, 2) transparent translation between sym-

bolic agent name and physical workstation address, 3) experiment start synchroniza-

tion, and 4) experiment termination notification.

2

Communication

Figure 2: An agent consists of the individual Agent layer, a Communications layer,
and the MATE control layer.

2 MATE Tools

MATE tools automate much of the work involved in monitoring and organizing the

execution of the distributed problem solver. MATE’S primary control tool is “AUTO-

MATE” which finds a set of eligible machines and executes preconfigured experimental

trials. Alternatively, experiments may be run manually via the program “LAUNCH-

MATE”, which may be selected from a menu in the X-windows user interface (see

figure 3), or simply typing the program name after the UNIX command prompt. -

Using AUTO-MATE, each experimental trial is automatically monitored for net-

work, machine, or software failure and is restarted if necessary and possible. The

results may be reviewed at the time the experiments are run or much later, as each

trial log is automatically archived for later analysis. These logs are used not only for

gathering performance information but in debugging the distributed problem solver

as well.

3

Figure 3: The Manual M,4TE User Interface

4

There are three phases to running experiments: 1) Experiment configuration: 2)

network resource allocation, and 3) experiment execution and recording. Each of

these phases is described below.

2.1 Experimental Configuration

Each experiment must be configured according to number of agents (and therefore the

number of machines to be used), communication policy, inference engine, rule bases

and data sets. The configuration of experiments is done manually, by specifying a

collection of invocation parameters to MATE tools. Currently, communication poli-

cies may be selected as broadcast, undirected-request, and directed-request. Three

inference engines may be selected: 1) single - for debugging a single agent with no

communication 2) non-tms - for debugging multiple agents without truth mainte-

nance systems 3) full-engine - for running multiple agents with truth maintenance

systems. Any number of rule bases and data sets may be created and specified for

- an experimental trial. In addition, new inference engines and communication policies

may be added to the system by simply building the new software and appending the

list of engine types (or communication policies) in the appropriate MATE tools.

5

2.2 Network Resource Allocation

In the network resource allocation phase, workstations in the local area network

are selected for the experiments by the program, “NOSE”. NOSE is called either

from AUTO-M,4TE or run manually. NOSE consults a list of known workstations

on the local area network, and selects a machine for each agent. NOSE tests each

workstation to determine if it: 1)has the proper file system and account access to

run the experiments,’ 2) has the memory resources to run the lisp interpreter, 3)

has sufficient CPU power and 4) the system is not heavily loaded by other users

(the load threshold is adjustable.) NOSE produces a list of suitable workstations

once per experimental session or whenever a negative change in usage patterns of the

workstations is detected during the runs. This was found to be quite sufficient, and

much less expensive than testing for workstation availability before each trial.

2.3 Experiment Execution and Recording

-
Once the experiment configuration is in place, and a list of capable machines is

created, the distributed problem solver may be initiated through the AUTO-MATE

control and monitoring program (implemented as a UNIX csh program), or manually

via menu selections (see figure 5.3). Typically, manual invocation of the system is

‘In this implementation we use NFS, the UNIX-based network file system, for setting up, control-
ling, and recording the experiments. Other implementation choices are possible and will not affect
the experimental results. The agents communicate between themselves via the communication server
which is independent of NFS.

6

performed while debugging new rule sets, inference engines. etc., as the experimenter

is given finer control over execution and can interact with the lisp interpreter, run

single step, and watch rule tracings and assumptions data base creation, etc.

The main purpose of AUTO-MATE is to execute a problem-solving system over

a variety of problem scenarios, making sure everything goes smoothly. This includes:

0 ensuring agent logs are written properly

0 ensuring that all agents are up and running - restarting agents whenever error
conditions allow

0 verifying that no agent terminates prematurely

0 detecting when an experiment is over

0 detecting error conditions

For each experimental trial, AUTO-MATE begins by copying the proper infer-

ence engine initialization file and rule-sets (specified by invocation parameters) for

this particular trial into place. AUTO-MATE then runs the communication server:

watching to ensure it starts successfully2. Should the server have any errors, AUTO-

MATE will persistently re-start the server until it runs successfully. At this point

-

each agent is then initiated on the remote workstations using the UNIX remote shell

execution command, rsh. As a result of the rsh, a UNIX csh script is executed on

each machine that, after killing off any other agents found on the machine, will start

2The communications server is needed for instrumentating the experiment, and will not be neces-
sary in a deployed system. However, agents must either address the problem of how to synchronize
problem solving, or have the ability to maintain results on multiple problem instances.

7

up common lisp, thus loading in and esecuting the agent process. This part of the

experiment system is subject to several types of failures (e.g. a machine has crashed,

the network went down, there is not enough memory available to start lisp) so AUTO-

MATE closely monitors log files for the agents. If necessary, AUTO-MATE will try

to restart one or more agents that did not start, and may re-run NOSE looking for

other available machines.

The UNIX csh script invoked on each workstation starts the process to build

and execute an agent. The remote shell script first outputs a recognizable welcome

message to the log file. This informs the AUTO-MATE monitoring process that

agent initialization has begun successfully. After the message is output, the remote

script invokes the lisp interpreter and reads the initialization file, loading the inference

engine and rule and data-set, and begins execution of the remote agent. '4t this point

the lisp agent makes a connection with the communication server and waits for a

synchronization message to start processing inferences. This synchronization message

signals that all agents are ready to begin. During problem solving, agents write many

intermediate results and runtime statistics (such as size of working memory, number

of messages sent or received, CPU times, and so on) to the log file as each step of

the processing proceeds. When the agent can make no further inferences with its

-

current data base, it enters a loop and waits for any messages that could trigger

further inferences. A recognizable message is written to the log file when this loop is

entered.

8

Since the communication server must be prepared to process broadcast messages,

and the names and addresses of the agents are not known to the server until a connec-

tion is made, all agents are required to connect with the server before any messages

are delivered. The communications server establishes port connections for agents, us-

ing streams, and waits for a connection message from each agent. As connections are

made, the server builds up its name translations table. Once all connections are made,

the server sends a “Gentlemen start your inference engines” synchronization message

to all agents. This synchronization procedure prevents fast agents from queueing up

large numbers of incoming messages in the server before they can be delivered to the

agents. Without this synchronization, a single slow agent will delay the delivery of

messages to all agents.

When all agents are finished processing and are waiting for further messages, the

AUTO-MATE monitoring process detects that the trial is complete (by recognizing

that this pattern is at the end of each log file for a fixed time period) and terminates

the communication server and the agents. The log files for each of the agents and the

communication server are copied into the proper place in the directory structure for
I

that experimental trial, and the next trial is started.

9

3 Summary

The MATE (Multi-Agent Test Environment) testbed is a collection of experiment

management tools for the design, testing, and evaluation of distributed problem-

solving experiments. These tools use several UNIX-based workstations networked

together via ethernet in a large local-area network. MATE can be used to run dis-

tributed experiments automatically and monitors experiment execution and comple-

tion.

10

Appendix A

Auto-Mate Functions

This appendix contains documentation for a number of functions developed for the

automated control of experimentation in MATE. These functions occur in shell files,

but may also be typed at the shell interpreter as individual commands.

auto-mate n-agents dir time-limit > & log-file

n-agents
dir

time-limit

log-file

The number of agents in this run of experiments
The directory containing the rule base sets for the
experimental trials
If the experiments are not completed by this time, stop,
where time is mmddhh.
The name of a file to which all output from auto-mate is recorded.

Example: auto-mate 15 trd 050707 > & trd.log1

Auto-mate is the top level command entered by the experimenter. Auto-mate is a
csh script which runs a sequence of experimental trials using the rules and inference
engine specified by the “dir” parameter and the number of agents specified by the “n-
agents” parameter. The particular sequence of network configurations is specified in
the auto-mate script file itself (and can be modified by editing the script file). Auto-
mate first copies the proper inference engine load file to the default common lisp load
file, “.clinit.cl”, and invokes auto-link to prepare the rule sets and result directories
for each network configuration. Auto-mate then invokes auto-mate-run-scene once
for each experimental trial to actually run the experiments. The file specified by the
parameter “log-file” will contain a record of the entire set of experiments.

aut o-mat e- kill-wait

Example: auto-mate-kill-wait

11

Auto-mate-kill-wait makes sure everything has died from previous runs when auto-
mate is first started. It first checks for the presence of “auto-mate-run-scene” or “auto-
mate-launch-processes” in the PS table. If either exist, auto-mate exits. Otherwise
auto-mate-kill-wait waits for any processes, whose task is to kill auto-mate processes,
to finish, before allowing auto-mate to continue. This program is run as a subprocess
of auto-mate.

auto-mate-killer

Example: aut o-mat e-killer

Auto-mate-killer’s purpose is to terminate an experimental trial. This is accomplished
by killing the communications server. Auto-mate-killer is invoked when either the
experiment has finished or when the experiment must be restarted (by auto-mate-
run-scene or auto-mate-launch-processes). If by some chance an agent does not die
when the communications server dies, auto-mate-killer will also kill this process. This
is accomplished by scanning the output of the UNIX “ps” command output for the
existence of an aut o-mat e-remo t e- agent process.

auto-mate-launch-processes n-agents time-limit

n-agents
time-limit

The number of agents in this run of experiments
If the experiments are not completed by this time, stop,
where time is mmddhh.

Example: auto-mate-launch-processes 15 050707

auto-mate-launch-processes is a csh script that fires up the communication server arid
the agent processes on the remote workstations and monitors them to ensure t h t y
started properly, stopping and retrying if necessary.

Auto-mate-launch-processes first tests that the number of hosts in the file “ailto-
mate-hosts” is greater than or equal to the number specified by the “n-agents“ pa-
rameter. If not then a new “auto-mate-hosts” file is generated by running “nose“.

Auto-mate-launch-processes then fires up the communication server and monitors
that it started properly. If an error is detected the server is killed, a wait is performed
to allow the network operating system software to reset, and the server is restarted.

Once the server is up, auto-mate-launch-processes then fires up each agent on
a remote workstation with a “rsh host auto-mate-remote-agent” command, using

12

the workstations specified in the “auto-mate-hosts’ Aut o-mat e-launch-processes
then monitors the log files of the agents until it determines that they have started
properly or an error is detected. If the “rsh” command fails, it can be retried without
stoping the other agents or server. If the “rsh” command succeeds but the “auto-
mate-remote-agent” command fails on the remote host then the entire experiment,
server and agents, is termintated and started over.

auto-mate-remote-agent agent-number max-agents

agent-number
max-agents

The index of the agent to run
The total number of agents in this experiment

Example: auto-mate-remote-agent 10 15

Auto-mate-remote-agent is a csh script that runs on the remote workstations. This
script cleans up any previous files in /tmp, outputs a welcome message to the script
file (so it can be detected by auto-mate-launch-processes), outputs some identifing
info to the script file for debugging purposes, invokes common lisp to actually run
the agent redirecting output to the script file, and outputs exit message to script file
after lisp exits.

auto-mate-run-scene dir max-agents time-limit min-agents

dir
max-agents
time-limit

min-agents

The directory containing the rule sets for an experimental trial
The maximum number of agents in this run of experiments
If the experiments are not completed by this time, stop,
where time is expressed as mmddhh
The minimum number of agents in this run of experiments

Example: auto-mate-run-scene trd/scene2.l/scene2.1.3 15 050707 15

Auto-mate-run-scene is a csh script which runs a single experimental trial, or a se-
quence of trials using the same rules, varying the number of agents. Auto-mate-run-
scene first checks the time limit, checks for the existence of the “auto-mate-abort” file,
copies the rules specified by the “dir” parameter to a default load directory, creates a
directory to hold the log files for each number of agents, and deletes any left over agent
or server log files. Auto-mate-run-scene then invokes auto-mate-launch-processes to
fire up the server and the agents on remote workstations.

Auto-mate-run-scene then monitors the agent log files to determine when the
experimental trial is complete, or if an error has occured. The agent log files are

13

tested by running auto-mate-script-tester. If an error is detected, the experiment
is terminated and restarted from the beginning. When the experiment is detected
as being completed, the server is terminted with a “kill -9” command. Each agent
connected to the server will detect the server’s death and terminate itself. Auto-
mate-run-scene will then copy all the agent log files their final directories.

auto-mat e-script-t est er agent-numb er

agent-number the index of the agent whose script is to be tested

Example: auto-mate-scrip t- t es ter 6

Auto-mate-script-tester is a csh script that examines the log file of an agent (the
output of auto-mate-remote-agent) to determine the state of the agent. There are
three states an agent may be in: 1) it has encountered an error 2) it is waiting for
a message 3) it is proceeding with problem-solving. States 1 and 3 cause auto-mate-
script-tester to create files to indicate the agent is either in error and needs to be
restarted, or that the agent is still working.

If there has been an error, auto-mate-script-tester will detect the “Error: ...”
message in the log file. Auto-mate-script-tester then removes the host machine on
which the error occurred from the auto-mate-host file, and creates the auto-mate-
abort-and-retry which is a flag to auto-mate-run-scene to terminate the experiment
and start over. If the agent is waiting for a message, auto-mate-script-tester will
detect the presence of the profile information, as it is written to the log file each time
the agent goes into the wait for message loop. If neither of these states exist, then it
must be the case that the agent is still working. In this case auto-mate creates the
auto-mate-still-thinking file, which is a flag to the auto-mate- run-scene to continue
monitoring the agents.

auto-link number-of-agents

number-of-agents

Example: auto-link 15

the number of agents whose rules sets should be
symbolically linked

Auto-link makes symbolic links for all the experiment rule bases

14

kill-everyt hing

Example: kill-everyt hing

Kill-everything kills any processes which have “auto-mate” as part of the process
name. The purpose of the program is to stop any processes which are still executing.”

remot e-kill-all

Example: remote-kill-all

Remote-kill-all’s purpose is to go out over the net and detect and kill any zombie
lisp processes which may still be hanging around. This is accomplished by examining
the auto-mate-host table and executing a “remote-killer” processes on each machine
found in the auto-mate-hosts table.

remote-killer

Example: remote-killer

Remote-killer scans the processes on a machine for the existence of an auto-mate lisp
process and kills it.

nose number-of-agents

number-of-agents the number of agents for whom we must find host machines

Example: nose 15

Nose examines a list of workstations to see if they are suitable for running an agent.
The list is a comprehensive set of machines which are on the local area network, run
UNIX, and on which we have an account. The criteria for suitability includes:

1. having the correct disk mounted via NFS (for access to executables and agents)

2. the machine architecture is a Sun4.

3. having a low load average (ie. mostly idle)

4. the resources to run common lisp (sufficent processes, memory, swap space etc.)

15

Nose also examines the machines for left over lisp processes and kills them if they
exist. To find the suitable workstations, NOSE invokes the subprocess nose-try for
each machine in the list. For each suitable machine, an entry is made in the file
“auto-mate- hos t s .”

nose-try host-name number-of-agents

host-name
number-of-agents

The host to test for the ability to run an agent
The number of hosts we need to find

Example: nose-try zaphod.es.llnl.gov 15

Nose-try is a csh script which tests a single host for the ability to run and agent
remotely. Nose-try first tests the length of the auto-mate-hosts list against the pa-
rameter “number-of-agents” and terminates if enough hosts are already found. If
more hosts are needed nose- try launches a “rsh host-name remote-nose” command to
the remote host to test that host.

16

remote-nose

Example: remote-nose

Remote-nose is a csh script which runs on the remote workstation that is being tested
for the ability to run an agent. Remote-nose tests the host for the criteria described
under “nose”. If these criteria are met then remote-nose appends this host name to
the list auto-mate-host s.

server n-agents time-limit log-file

n-agents
time-limit
log-file

the number of agents for the server to connect
If the experiments are not completed by this time, stop.
The name of a file containing the record of all communication
and server messages

Example: server 15 041512 serverl5.log

Server is a “C)’ program which provides communication services between agents and
gathers runtime statistics.

17

